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Abstract. When only a small number of labeled samples are available,
supervised dimensionality reduction methods tend to perform poorly due
to overfitting. In such cases, unlabeled samples could be useful in im-
proving the performance. In this paper, we propose a semi-supervised
dimensionality reduction method which preserves the global structure of
unlabeled samples in addition to separating labeled samples in different
classes from each other. The proposed method has an analytic form of the
globally optimal solution and it can be computed based on eigendecom-
positions. Therefore, the proposed method is computationally reliable
and efficient. We show the effectiveness of the proposed method through
extensive simulations with benchmark data sets.

1 Introduction

The goal of dimensionality reduction is to obtain a low-dimensional representa-
tion of high-dimensional data samples while preserving most of ‘intrinsic infor-
mation’ contained in the original data. Once dimensionality reduction is carried
out appropriately, the compact representation of the data can be used for various
succeeding tasks such as visualization and classification.

In supervised learning scenarios where data samples are accompanied with
class labels, Fisher discriminant analysis (FDA) [1] is a popular dimensionality
reduction method. FDA seeks an embedding transformation such that between-
class scatter is maximized and within-class scatter is minimized. FDA works very
well if samples in each class are Gaussian with the common covariance structure.
However, it tends to give undesired results if samples in a class form several
separate clusters or there exist outliers [1]. To overcome this drawback, local FDA
(LFDA) has been proposed [2], which localizes the between-class and within-
class scatter matrices. LFDA works well even when within-class multimodality
or outliers exist. Furthermore, LFDA overcomes critical limitation of original
FDA in dimensionality reduction—the dimension of the FDA embedding space



should be less than the number of classes [1], while LFDA does not suffer from
this restriction in general.

However, the performance of LFDA (and all other supervised dimensionality
reduction methods) tend to be degraded when only a small number of labeled
samples are available. Thus, the supervised methods overfit embedding spaces
to the labeled samples. In such cases, it is effective to make use of unlabeled
samples which are often available abundantly, i.e., semi-supervised learning. The
book [3] showed through extensive simulations that principal component analysis
(PCA), which is an unsupervised dimensionality reduction method for preserving
the global data structure, works moderately well in semi-supervised learning
scenarios.

Although PCA is reported to work well, it may not be the best choice in semi-
supervised learning due to its unsupervised nature. In this paper, we propose a
new semi-supervised dimensionality reduction method which smoothly bridges
LFDA and PCA so that we can control our reliance on the global structure
of unlabeled samples and information brought by (a small number of) labeled
samples. We experimentally show that the proposed method, which we refer to
as semi-supervised LFDA (SELF), compares favorably with other methods. Note
that SELF maintains the same computational advantage of LFDA and PCA, i.e.,
a global solution can be analytically computed based on eigendecompositions.
Therefore, SELF is still computationally efficient and reliable.

2 Preliminaries

In this section, we formulate the linear dimensionality reduction problem and
give some mathematical backgrounds.

2.1 Formulation

Let xi ∈ Rd (i = 1, 2, . . . , n) be d-dimensional samples and let X ≡
(x1|x2| · · · |xn). Let z ∈ Rr (1 ≤ r ≤ d) be a low-dimensional representation
of a high-dimensional sample x ∈ Rd, where r is the dimensionality of the re-
duced space. We focus on linear dimensionality reduction, i.e., using a d × r
transformation matrix T , an embedded representation z of a sample x is ob-
tained as

z = T⊤x, (1)

where ⊤ denotes the transpose of a matrix or a vector.
Many dimensionality reduction techniques developed so far involve an opti-

mization problem of the following form:

T OPT ≡ argmax
T∈Rd×r

[
tr

(
T⊤CT (T⊤CT )−1

)]
. (2)

Let {φk}d
k=1 be the generalized eigenvectors associated with the generalized

eigenvalues {λk}d
k=1 of the following generalized eigenvalue problem:

Cφ = λCφ. (3)



We assume that the generalized eigenvalues are sorted as λ1 ≥ λ2 ≥ · · · ≥ λd and
the generalized eigenvectors are normalized as φ⊤

k Cφk = 1 for k = 1, 2, . . . , d.
Note that this normalization is often automatically carried out by an eigensolver.
Then a solution T OPT is analytically given as (φ1|φ2| · · · |φr) (e.g., [1]):.

When addressing dimensionality reduction problems, we often face with a
matrix of the following pairwise form [2]:

S ≡ 1
2

n∑
i,j=1

Wi,j(xi − xj)(xi − xj)⊤, (4)

where W is some n-dimensional matrix. Let D be the n-dimensional diagonal
matrix with Di,i ≡

∑n
j=1 Wi,j , and let L ≡ D − W . Then S is expressed as

S = XLX⊤, which is positive semi-definite.

2.2 Principal Component Analysis (PCA)

A fundamental unsupervised dimensionality reduction method is principal com-
ponent analysis (PCA).

Let S(t) be the total scatter matrix :

S(t) ≡
n∑

i=1

(xi − µ)(xi − µ)⊤, (5)

where µ ≡ 1
n

∑n
i=1 xi. The PCA transformation matrix T PCA is defined as

T PCA ≡ argmax
T∈Rd×r

[
tr

(
T⊤S(t)T (T⊤T )−1

)]
. (6)

That is, PCA seeks a transformation matrix T such that scatter in the embed-
ding space is maximized. A solution T PCA is given with C = S(t) and C = Id,
where Id is the identity matrix on Rd.

2.3 Locality-Preserving Projection (LPP)

Another useful unsupervised dimensionality reduction technique is locality-
preserving projection (LPP) [4].

Let A be the affinity matrix, i.e., the n-dimensional square matrix with Ai,j

being the affinity between xi and xj . We assume that Ai,j ∈ [0, 1]; Ai,j is large
if xi and xj are ‘close’ and Ai,j is small if xi and xj are ‘far apart’. There
are several different manners of defining A, e.g., based on nearest neighbors or
the heat kernel Through the paper, we use the local scaling heuristic [5] as the
definition of the affinity matrix A, i.e.,

Ai,j = exp
(
−∥xi − xj∥2

σiσj

)
. (7)



σi is the local scaling around xi defined by σi = ∥xi − x
(k)
i ∥, where x

(k)
i is the

k-th nearest neighbor of xi. A heuristic choice of k = 7 has shown to be useful
through extensive simulations [5, 2].

Let S(n) and S(l) be the normalization matrix and the local scatter matrix
defined by

S(n) ≡ XD(n)X⊤, S(l) ≡ 1
2

n∑
i,j=1

W
(l)
i,j (xi − xj)(xi − xj)⊤, (8)

where D(n) is the n-dimensional diagonal matrix with D
(n)
i,i ≡ 1

n

∑n
j=1 Ai,j and

W
(l)
i,j ≡ 1

nAi,j . The LPP transformation matrix T LPP is defined as

T LPP ≡ argmax
T∈Rd×r

[
tr

(
T⊤S(n)T (T⊤S(l)T )−1

)]
. (9)

That is, LPP seeks a transformation matrix T such that nearby data pairs in the
original space Rd are kept close in the embedding space Rr. Thus, LPP tends to
preserve the local structure of the data. A solution T LPP is given with C = S(n)

and C = S(l).

2.4 Fisher Discriminant Analysis (FDA)

A popular supervised dimensionality reduction technique is Fisher discriminant
analysis (FDA) [1]. When discussing supervised learning problems, we suppose
that we have n′ labeled samples {(xi, yi)}n′

i=1, where yi (∈ {1, 2, . . . , c}) is a class
label associated with the sample xi and c is the number of classes. Let n′

m be
the number of labeled samples in class m ∈ {1, 2, . . . , c}.

Let S(b) and S(w) be the between-class scatter matrix and the within-class
scatter matrix :

S(b) ≡
c∑

m=1

n′
m(µm − µ)(µm − µ)⊤, S(w) ≡

c∑
m=1

∑
i:yi=m

(xi − µm)(xi − µm)⊤,

(10)

where µm ≡ 1
n′

m

∑
i:yi=m xi. The FDA transformation matrix T FDA is defined

as
T FDA ≡ argmax

T∈Rd×r

[
tr

(
T⊤S(b)T (T⊤S(w)T )−1

)]
. (11)

That is, FDA seeks a transformation matrix T such that between-class scatter
is maximized and within-class scatter is minimized in the embedding space Rr.
A solution T FDA is given with C = S(b) and C = S(w).

The between-class scatter matrix S(b) has at most rank c−1 [1]. This implies
that FDA allows us to obtain at most c − 1 meaningful features; the remaining
features found by FDA are arbitrary in the null space of S(b). This is an essential
limitation of FDA in dimensionality reduction.



2.5 Local Fisher Discriminant Analysis (LFDA)

Local Fisher discriminant analysis (LFDA) is a supervised dimensionality reduc-
tion method [2] which overcomes vulnerability of original FDA against within-
class multimodality or outliers [1].

Let S(lb) and S(lw) be the local between-class scatter matrix and the local
within-class scatter matrix defined by

S(lb) ≡
n′∑

i,j=1

W
(lb)
i,j

2
(xi − xj)(xi − xj)⊤, S(lw) ≡

n′∑
i,j=1

W
(lw)
i,j

2
(xi − xj)(xi − xj)⊤,

(12)

where W (lb) and W (lw) are the n′-dimensional matrices with

W
(lb)
i,j ≡

{
Ai,j(1/n′ − 1/n′

yi
) if yi = yj ,

1/n′ if yi ̸= yj ,
W

(lw)
i,j ≡

{
Ai,j/n′

yi
if yi = yj ,

0 if yi ̸= yj .
(13)

The LFDA transformation matrix T LFDA is defined as

T LFDA ≡ argmax
T∈Rd×r

[
tr

(
T⊤S(lb)T (T⊤S(lw)T )−1

)]
. (14)

Ai,j(1/n′ − 1/n′
yi

) is negative while Ai,j/n′
yi

and 1/n′ are non-negative. Thus,
LFDA seeks a transformation matrix T such that nearby data pairs in the same
class are made close and the data pairs in different classes are made apart;
far apart data pairs in the same class are not imposed to be close. Samples in
different classes are separated from each other irrespective of their affinity values.
A solution T LFDA is given with C = S(lb) and C = S(lw).

When Ai,j = 1 for all i, j (i.e., no locality), S(lw) and S(lb) are reduced to
S(w) and S(b) [2]. Thus, LFDA could be regarded as a localized variant of FDA.
The between-class scatter matrix S(b) has at most rank c − 1, while its local
counterpart S(lb) usually has full rank (given n′ ≥ d). Therefore, LFDA can be
applied to dimensionality reduction into any dimensional spaces.

3 Semi-Supervised LFDA (SELF)

In this section, we propose a new dimensionality reduction method for semi-
supervised learning scenarios. From here on, we consider the case where, among
all samples {xi}n

i=1, only {xi}n′

i=1 (1 ≤ n′ ≤ n) are labeled and the rest are
unlabeled.

3.1 Basic Idea

When only a small number of labeled samples are available, supervised dimen-
sionality reduction methods tend to find embedding spaces which are overfit-
ted to the labeled samples. In such situations, using unlabeled samples is often
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Fig. 1. Illustrative examples of LFDA and PCA for toy data sets. Circle/triangle sym-
bols denote samples in positive/negative classes and filled/unfilled symbols denote
labeled/unlabeled samples; solid and dashed lines denote 1-dimensional embedding
spaces found by LFDA and PCA, respectively (onto which data samples will be pro-
jected).

effective—indeed, the book [3] showed through extensive simulations that PCA
works well on the whole; our experimental results in Section 4 also show that
PCA is sometimes better than LFDA. This means that preserving the global
structure of all samples in an unsupervised manner can be better than strongly
relying on class information provided by a small number of labeled samples.

Figure 1 depicts 2-dimensional 2-class examples; circle/triangle symbols de-
note samples in positive/negative classes and filled/unfilled symbols denote la-
beled/unlabeled samples; solid and dashed lines denote 1-dimensional embedding
spaces found by LFDA and PCA, respectively (onto which data samples will be
projected). For the data set in Figure 1(a), both LFDA and PCA can find good
embedding spaces which well separate unlabeled samples in different classes from
each other. However, for the data set in Figure 1(b), LFDA finds an embedding
space that is overfitted to the labeled samples. On the other hand, in the case
of Figure 1(c), PCA does not work well due to its unsupervised nature.

The above result implies that LFDA and PCA can compensate for the weak-
ness of each other, i.e., LFDA can utilize label information, while PCA can
avoid overfitting. Our simulation results with benchmark data sets in Section 4
also show that LFDA and PCA work in a complementary manner. Motivated by
these facts, we propose bridging LFDA and PCA so that we can smoothly control
our reliance on the global structure of unlabeled samples and class information
brought by labeled samples. We refer to the proposed method as semi-supervised
LFDA (SELF).

The embedding transformations of LFDA and PCA can be analytically com-
puted based on the eigendecompositions. So we combine the eigenvalue problems
of LFDA and PCA and solve them together. This allows us to maintain the com-
putational efficiency and reliability of LFDA and PCA.



3.2 Definition

More specifically, we propose solving the following generalized eigenvalue prob-
lem:

S(rlb)φ = λS(rlw)φ, (15)

where S(rlb) and S(rlw) are regularized local between-class scatter matrix and
regularized local within-class scatter matrix defined by

S(rlb) ≡ (1 − β)S(lb) + βS(t), S(rlw) ≡ (1 − β)S(lw) + βId. (16)

β (∈ [0, 1]) is a trade-off parameter—SELF is reduced to LFDA when β = 0, and
SELF is reduced to PCA when β = 1. In general, SELF inherits characteristics
of both LFDA and PCA (this will be discussed in detail in Section 3.3). The
solution of SELF can be computed in the same way as LFDA or PCA.

3.3 Properties

First, we give an interpretation of S(rlb). The matrix S(rlb) can be expressed as

S(rlb) ≡ 1
2

n∑
i,j=1

W
(rlb)
i,j (xi − xj)(xi − xj)⊤, (17)

where W (rlb) is the n-dimensional matrix with

W
(rlb)
i,j ≡


(1 − β)Ai,j(1/n′ − 1/n′

yi
) + β/n if yi = yj ,

(1 − β)/n′ + β/n if yi ̸= yj ,

β/n otherwise.
(18)

The first case in Eq.(18) is negative if β <
Ai,jn(n′−n′

yi
)

Ai,jn(n′−n′
yi

)+n′n′
yi

(< 1). This implies
that SELF tries to make sample pairs in the same class close if β is small, while it
separates them from each other if β is large. Thus the local data structure in the
same class tends to be preserved when β is small, but it is no longer preserved
when β is large. The second case in Eq.(18) is always positive for any β ∈ [0, 1],
implying that SELF always tries to make sample pairs in different classes apart
for any β. This would be natural in semi-supervised learning scenarios. The
third case in Eq.(18) is always non-negative, implying that unlabeled samples
are separated from each other for preserving the global data structure.

Next, we give an interpretation of S(rlw). When β = 0, S(rlw) (= S(lw))
could be ill-conditioned—this is crucial particularly when the dimension d of
the original data space is larger than the number n′ of labeled samples. In such
situations, βId included in S(rlw) works as a regularizer and SELF can avoid
overfitting to the labeled samples. Therefore, SELF is regarded as a regularized
variant of LFDA and would be more stable and reliable than original LFDA par-
ticularly when the number of labeled samples is small. Note that unlike Eq.(17),
S(rlw) does not have a pairwise expression since Id can not be expressed in a
pairwise form.
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Fig. 2. Embedded face samples (glasses vs. non-glasses). Circle/triangle symbols are
faces with/without glasses and filled/unfilled symbols are labeled/unlabeled samples.

3.4 Numerical Examples

For illustrating how SELF behaves, let us use the Olivetti face data set5. The
data set consists of 400 gray-scale face images (40 people, 10 images per person);
each image consists of 4096 (= 64 × 64) pixels and each pixel takes an integer
value between 0 and 255 as the intensity level. In this simulation, we use the
image samples of only 10 subjects (i.e., totally 100 images) for making the visu-
alization results clear. We note that the result does not change essentially (but
visually denser) when all 400 images are used.

Among 10 people used for the experiments, 3 subjects are with glasses and
other 7 are without glasses (see the top-left pictures of Figure 2). Our task is to
embed the face images into a two-dimensional space so that the subjects with
and without glasses are separated from each other. We treat 1 image per person
as labeled (i.e., totally 3 faces with glasses and 7 faces without glasses) and the
rest are treated as unlabeled. Since each class contains several different subjects,
this data set is thought to possess within-class multimodality.

The embedded results are shown in Figure 2, where circle/triangle symbols
are faces with/without glasses and filled/unfilled symbols are labeled/unlabeled
samples. The figure shows that FDA and LFDA perfectly separate the labeled

5 ‘http://www.cs.toronto.edu/~roweis/data.html’



samples in different classes from each other. However, unlabeled samples tend
to be mixed due to an overfitting phenomenon. PCA and LPP tend to mix the
labeled samples in different classes due to the unsupervised nature. Consequently,
unlabeled samples in different classes are also mixed. On the other hand, SELF
with β = 0.5 clearly separates the labeled samples in different classes from each
other, and at the same time, it also nicely separates the unlabeled samples in
different classes from each other. We note that, in this visualization simulation,
the result of SELF is not sensitive to the choice of the trade-off parameter β;
the results are almost unchanged for 0.01 ≤ β ≤ 0.99.

4 Simulations

In this section, we experimentally evaluate the performance of relevant dimen-
sionality reduction methods using standard classification benchmark data sets.

The book [3] conducted systematic experiments for comparing semi-
supervised learning methods. The results showed that each method performs
very well for a particular type of data sets. However, at the same time, it tends
to be poor for other kinds of data sets. Thus, the performance of semi-supervised
learning methods is highly dependent on the type of data sets and there seems
to be no single best method. On the other hand, 1-nearest neighbor classifier
is shown to be stable for various data sets, although it may not be the best
possible method in semi-supervised classification. For avoiding the bias caused
by the choice of the learning methods, we decided to use the 1-nearest neighbor
classifier in our experiments.

The misclassification rate is sometimes monotone increasing as the dimen-
sionality is reduced6. In such cases, if the best dimensionality is chosen, e.g., by
cross-validation, the largest dimension is mostly chosen (i.e., no dimensionality
reduction). Then we may not be able to compare the performance of dimensional-
ity reduction methods in a meaningful way. Prefixing the reduced dimensionality
r to some number is a possible option for avoiding the above problem, but the
evaluation results can significantly depend on the choice of the dimensionality.
Based on this argument, we decided to use the average misclassification rate
over reduced dimensions (or equivalently the area under the classification error
curve) as our error metric, which we believe to be reasonable in the current
experiments.

First, we employ the benchmark data sets taken from the book [3], which
consist of 9 semi-supervised data sets. We refer to them as the SSL data sets.
We did not test the SSL8 and SSL9 data sets since they are too huge. Note that
the SSL6 data set contains 6 classes, while the other data sets have 2 classes.
Table 1 describes the mean and standard deviation of the misclassification rate
over repetitions. Since we had a numerical problem when computing LFDA,
we slightly regularized it and consider SELF with β = 0.001 as LFDA. The
fulfillment of the cluster assumption [3] is described as ‘CA’, which is the correct
6 Even so, dimensionality reduction is still useful since a compact representation of

the data can yield faster computation in the test phase.



classification rate by the 1-nearest-neighbor classifier when both training and
test labels are used for classifying all the training and test samples. Note that
CA is computed before dimensionality reduction is applied, so it represents the
fulfillment of the cluster assumption of the original data samples. The larger the
value of CA is, the more reliable the cluster assumption would be (although the
values are coarse).

When the number of labeled samples is 100 (see the upper half of the table),
LFDA and PCA tend to work well in a complementary way—LFDA works well
if CA is small while PCA works well if CA is large. SELF with β = 0.5 tends
to make up the deficit of each method; moreover it can outperform both LFDA
and PCA for some cases. We also test ‘SELF(CV)’, where β in SELF is chosen
from {0, 0.25, 0.5, 0.75, 1} by 10-fold cross validation. The results shown in the
table show that SELF(CV) further improves the performance over SELF with
β = 0.5. LPP does not work so well on the whole. The combination of LFDA
and LPP in a similar way (indicated by SELF’(CV) in the table) also does not
perform as good as SELF(CV). We also tested the combination of LFDA, PCA,
and LPP, but this did not further improve the performance over SELF so we
omit the detail.

When the number of labeled samples is only 10 (see the lower half of Table 1),
the difference of the performance among the methods shrinks but SELF(CV) is
still slightly better than the other methods.

We also conducted similar experiments using the IDA data sets [6], where we
randomly extracted labeled and unlabeled samples from the pool of all samples;
we tested n′ = 100, 30. The results are summarized in Table 2, showing that
SELF(CV) still compares favorably with alternative methods.

Overall, SELFreg is shown to be a useful dimensionality reduction.

5 Conclusions and Future Prospects

Our approach to dimensionality reduction in this paper is called the filter ap-
proach, i.e., the dimensionality reduction procedure is independent of subsequent
classification algorithms. Our experimental results showed that the proposed
method, SELF, works well when it is combined with the 1-nearest-neighbor
classifier. An important future direction is to develop a wrapper method of
semi-supervised dimensionality reduction, which explicitly takes properties of
subsequent classification algorithms into account. We expect that a wrapper ap-
proach is promising in semi-supervised learning since the performance of elab-
orate semi-supervised learning methods is highly dependent on the reliability
of the assumption behind unlabeled samples such as the cluster or manifold
structure [3].

In this paper, we focused on linear dimensionality reduction. However, we can
show that a non-linear variant of SELF is obtained by employing the standard
kernel trick. This kernelized variant also allows us to reduce the dimensionality
of non-vectorial structured data such as strings, trees, and graphs [7]. However,
kernelized SELF shares the common difficulty in kernel methods, i.e., how to



Table 1. Misclassification rate for the SSL data sets. The numbers in the bracket
are the standard deviation over repetitions. For each data set, the best method and
comparable ones based on the t-test at the significance level 5% are described in bold
face. ‘CA’ denotes the fulfillment of the cluster assumption. SELF(CV) denotes SELF
with β chosen by cross validation. SELF’ denotes the combination of LFDA and LPP
in a similar manner.

Data CA LFDA
SELF

(β = 0.5)
PCA

SELF
(CV)

LPP
SELF’
(CV)

SSL1 0.98 14.9(1.8) 6.0(1.3) 6.2(1.1) 6.0(1.4) 27.4(1.4) 28.4(2.6)
SSL2 0.97 15.7(0.9) 9.6(1.1) 11.2(0.8) 10.3(2.4) 24.1(2.2) 21.9(1.9)
SSL3 1.00 21.1(3.9) 14.3(1.8) 15.5(1.0) 14.1(1.4) 18.0(2.4) 18.5(2.4)
SSL4 0.58 33.4(3.5) 36.6(2.4) 48.7(2.4) 33.4(3.7) 46.7(1.7) 36.0(4.7)
SSL5 0.64 27.5(2.3) 27.2(2.3) 31.0(1.9) 27.3(2.9) 37.0(1.3) 35.3(1.9)
SSL6 0.98 38.1(1.5) 35.4(2.4) 27.3(2.7) 27.0(2.7) 35.2(1.7) 36.9(3.2)
SSL7 0.68 29.4(2.4) 29.1(2.4) 29.3(1.6) 27.7(1.4) 32.0(0.9) 32.8(1.5)

# Bests 2 5 2 7 0 1

SSL1 0.98 22.9(5.1) 26.3(6.1) 19.2(4.2) 22.3(5.4) 45.9(2.3) 48.5(2.4)
SSL2 0.97 22.3(3.0) 21.3(2.9) 25.8(4.2) 21.5(2.5) 31.2(7.5) 21.4(0.8)
SSL3 1.00 42.7(2.9) 42.9(3.0) 42.7(4.2) 43.6(3.2) 40.4(4.1) 41.0(5.2)
SSL4 0.58 47.3(2.9) 47.7(2.7) 49.9(2.2) 48.3(3.3) 49.5(2.5) 48.5(1.9)
SSL5 0.64 45.4(4.4) 45.4(4.4) 36.3(5.5) 40.2(6.9) 41.2(3.3) 44.5(3.6)
SSL6 0.98 67.7(4.6) 67.0(4.0) 67.7(4.1) 67.6(4.6) 71.4(4.0) 73.7(2.9)
SSL7 0.68 43.6(5.2) 43.6(5.2) 38.9(5.7) 40.1(7.1) 40.3(4.2) 42.7(5.3)

# Bests 5 4 5 6 3 4

Table 2. Misclassification rate for the IDA data sets.

Data CA LFDA
SELF

(β = 0.5)
PCA

SELF
(CV)

LPP
SELF’
(CV)

banana 0.87 27.0(2.6) 26.6(2.1) 26.4(1.9) 26.5(2.1) 26.4(1.9) 26.5(2.0)
b-cancer 0.68 34.5(4.4) 34.4(4.4) 34.4(4.1) 34.3(4.3) 34.8(4.0) 34.7(4.1)
diabetes 0.70 32.7(2.8) 33.0(2.7) 34.4(2.7) 33.0(2.7) 34.4(2.6) 33.2(2.7)
f-solar 0.63 39.5(5.1) 40.1(5.1) 40.1(5.2) 39.7(5.2) 39.7(5.4) 39.5(5.4)
german 0.69 31.2(2.9) 31.2(3.0) 33.7(2.8) 31.5(2.9) 33.7(2.6) 32.1(3.0)
heart 0.77 22.8(2.9) 22.6(2.8) 24.1(2.7) 23.1(2.8) 23.4(2.9) 23.1(2.8)
image 0.81 17.2(1.3) 18.8(1.3) 19.9(1.5) 17.8(1.7) 18.8(2.1) 16.6(1.3)

ringnorm 0.71 28.1(1.9) 28.9(1.9) 29.1(1.6) 28.1(1.8) 27.1(1.6) 27.6(1.8)
splice 0.71 29.9(3.5) 27.8(3.5) 30.8(2.3) 27.7(3.0) 42.1(1.9) 30.1(4.6)

thyroid 0.96 4.8(2.0) 5.3(2.1) 5.5(2.1) 5.0(1.9) 5.9(2.1) 5.1(2.0)
titanic 0.68 33.2(11.9) 33.2(11.9) 33.2(11.9) 33.2(11.9) 40.0(12.3) 37.4(12.5)

twonorm 0.94 4.8(1.3) 4.5(1.2) 4.1(1.1) 4.3(1.1) 4.0(1.0) 4.5(1.2)
waveform 0.85 15.5(1.4) 14.5(1.5) 14.1(1.4) 14.2(1.7) 13.8(1.4) 14.4(1.9)
# Bests 9 9 6 11 7 9

banana 0.87 31.1(4.0) 30.6(3.5) 30.0(4.1) 29.6(3.4) 30.0(4.1) 30.3(3.6)
b-cancer 0.67 36.1(6.4) 35.4(6.2) 36.1(6.3) 35.6(6.4) 36.1(5.8) 36.0(6.2)
diabetes 0.70 35.0(4.8) 34.7(4.3) 36.0(4.1) 34.9(4.4) 35.9(3.7) 35.1(4.2)
f-solar 0.63 41.5(5.5) 42.6(5.4) 42.7(5.1) 42.0(5.4) 40.6(5.3) 40.4(5.4)
german 0.69 36.6(4.7) 32.8(3.8) 35.6(4.1) 33.9(4.3) 36.0(4.0) 34.5(4.1)
heart 0.76 25.6(5.4) 23.7(4.9) 24.4(4.1) 24.6(4.7) 24.2(4.0) 24.9(4.2)
image 0.81 24.5(3.8) 26.2(3.2) 27.6(3.8) 26.0(3.8) 27.9(4.2) 24.5(3.5)

ringnorm 0.70 35.5(4.2) 34.0(3.7) 33.8(2.8) 33.1(3.2) 31.1(3.3) 32.5(3.8)
splice 0.71 34.0(3.1) 33.1(3.1) 34.6(2.5) 33.2(2.7) 45.2(2.5) 39.9(4.6)

thyroid 0.94 9.9(4.5) 8.3(4.1) 8.4(3.6) 8.7(4.2) 8.2(3.3) 8.9(4.2)
titanic 0.68 33.9(12.1) 34.0(12.2) 34.0(12.1) 33.9(12.1) 40.8(12.3) 37.5(12.9)

twonorm 0.94 15.3(6.5) 6.3(2.0) 4.3(1.3) 6.7(3.9) 4.2(1.3) 6.9(3.8)
waveform 0.85 27.5(4.3) 16.6(3.1) 15.6(2.3) 16.9(3.2) 15.3(2.2) 17.8(3.6)
# Bests 6 9 8 9 8 7



choose the kernel functions. This needs to be investigated in the context of semi-
supervised dimensionality reduction. In the future work, we will also explore
semi-supervised dimensionality reduction of structured data using kernel SELF.

A remaining important issue to be discussed—which is common to all semi-
supervised learning techniques—is how to optimize tuning parameters. We may
simply employ cross-validation for this purpose, but it has two potential prob-
lems. The first problem is that the number of labeled samples is typically small
in semi-supervised learning scenarios and thus cross-validation is not reliable
[3]. Fortunately, our experiments showed that SELF is not so sensitive to the
trade-off parameter β in small sample cases, but there is still room for further
improvement. The second problem is that labeled samples and unlabeled sam-
ples can have different (input) distributions. Such a situation is referred to as
covariate shift in statistics and ordinary cross-validation is known to be signifi-
cantly biased; importance-weighted cross-validation is unbiased under covariate
shift [8]. In the future work, we will investigate how the covariate shift adaptation
techniques could be employed in the context of semi-supervised dimensionality
reduction.
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