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Abstract—Three or more transcription factors (TFs) often
work together, and the combinatorial regulations are essential
in cellular machinery. However, it is impossible to discover
statistically significant sets of TF binding motifs due to the
necessity of the multiple testing procedure. To improve the
sensitivity of widely used Bonferroni correction or its modified
methods, such as Holm procedure, Westfall-Young permutation
procedure (WY-procedure) has often been applied. However,
few studies have used WY-procedure for the discoveries of the
combinatorial effects of the motifs because of the extremely
large computational time. In this paper, we propose an efficient
branch-and-bound algorithm to perform WY-procedure to enu-
merate statistically significant motif combinations. When we
use WY-procedure for the combinatorial regulation discovery,
finding the minimum P-value from each permuted dataset
consumes an enormous amount of time. We show that a
combination that has the possibility to achieve the minimum
P-value appears with high frequency over the threshold in
dataset. This property enables a frequent itemset mining
algorithm to efficiently select the candidates to achieve the
minimum P-value. Our demonstrations using yeast and human
transcriptome datasets show that the proposed algorithm
is orders-of-magnitude faster than WY-procedure, and can
practically list statistically significant motif combinations even
when any combinations are considered.

Keywords-Multiple Test, Combinatorial Regulation, Westfall-
Young Permutation Procedure, Motif Combination, Gene Ex-
pression

I. INTRODUCTION

Combinatorial activities of different transcription factors
(TFs) are essential to respond to a wide spectrum of envi-
ronmental and developmental signals [1]. However, compu-
tational scanning of TF binding motifs is often limited to
single motifs or pairs due to the necessity of a multiple
testing procedure. To detect statistically significant motif
combinations associated with a gene expression profile,
statistical tests for all combinations are performed. Such
multiple test results in a high false discovery ratio. For
example, when we set the significance level α to 0.05 and
perform 100 tests, the probability that at least one false
discovery happens is 1− 0.95100 = 0.994.

Multiple testing correction procedures have been pro-
posed [2]–[4] to avoid false discoveries. A simple and widely
used theoretical approach is Bonferroni correction [2]. Given

M tests, Bonferroni correction controls the probability of
occurrence of at least one false discovery, called family-
wise error rate (FWER), to be under α by calibrating the
adjusted significance level to δ = α/M . When we check all
possible motif combinations, M increases exponentially to
the number of motifs, and δ becomes a very small value.
Hence, the discovery of statistically significant motif com-
binations is extremely unlikely. Even when we use methods
improving detection power of Bonferroni correction, such as
Holm procedure [3], the same problem hides the statistical
significance of many combinations.

Another strategies, such as Westfall-Young permutation
procedure (WY-procedure) [4], generate a null distribu-
tion from thousands of randomly permuted datasets, and
determines δ based on the distribution. It is known that
WY-procedure has higher detection power than Bonferroni
correction, and improved methods of it [5], [6] have been
widely used in practice [7], [8]. While the high sensitivity
may allow us to discover statistically significant combi-
nations, a large amount of computing time is required in
permutation tests, and this prohibits the application of WY-
procedure to combination discovery. When WY-procedure
is used to find combinatorial regulations on 1,000 permu-
tation tests for 100 motifs, statistical tests are performed
1000 · (2100 − 1) ≈ 1033 times.

In this paper, we propose an efficient algorithm to perform
WY-procedure to enumerate statistically significant sets of
motifs. As a test statistic, we use Fisher’s exact test due
to its popularity and accuracy. However, this algorithm can
be extended to use Chi-square test and Mann-Whitney U
test instead of using Fisher’s exact test. To describe the
algorithm, we first introduce the calculation of the lower
bound of the P-value of a motif set. With the lower bound,
we identify motif sets that never achieve the minimum P-
value. These sets do not affect the multiple testing result.
We next associate the lower bound of a motif set with the
number of genes that are targeted by the set. This property
enables us to list motif sets whose lower bounds are less than
the threshold by using the motif set frequency. Such motif
sets can be efficiently listed with a frequent itemset mining
(FIM) algorithm. It is known that FIM algorithm requires a



large computing time when the threshold for the frequency
of motif sets is small. To avoid the small threshold, we
gradually decrease the threshold to find the minimum P-
value.

We apply the algorithm to gene expression profiles in
yeast and human transcriptome datasets. We demonstrate
that our method achieves orders of magnitude acceleration
over WY-procedure, and can successfully calibrate the sig-
nificance level even when all motif sets are considered. Our
method finds statistically significant motif sets of up to nine
motifs from real human dataset.

II. WESTFALL-YOUNG PERMUTATION PROCEDURE

In this section, we introduce WY-procedure to control
FWER under the given significance level α.

To simplify the problem, we assume here that each of the
N genes has a gene expression level. If a motif sequence
exists in the promoter region of a gene, the motif is regarded
to target the gene. When we focus on a set of multiple
motifs, we assume that the targeted genes of the set have all
of the motifs in the set in their promoter regions. Here, we
describe a set of motifs as a set of items, called itemset. For a
given itemset I , we classify N genes into two ways: targeted
or untargeted, and highly expressed or not. We define x(I)
as the number of targeted genes by I . n and a(I) indicate the
number of highly expressed genes and the number of genes
that are targeted by I and are highly expressed, respectively.

The P-value of I is calculated as the following equation
with one-sided Fisher’s exact test.

P (I) =

amax∑
ai=a(I)

(
n
ai

)(
N − n
x(I)− ai

)
(

N
x(I)

) , (1)

where amax = min {x(I), n}.
WY-procedure uses an empirical distribution computed

from randomly permuted datasets to determine δ [4]. When
FWER is controlled to α, the α percentage of all permuted
datasets has at least one P-value smaller than δ; that is, the
minimum P-value of the α percentage of permuted datasets
is less than δ. Therefore, we generate the empirical distribu-
tion of the minimum P-values from each randomly permuted
dataset, and then the α percentile point in the distribution
becomes δ in WY-procedure. After the calibration, when
P (I) ≤ δ, I is regarded as the significant set of motifs. We
here call such I a significant itemset.

The algorithm of WY-procedure is shown as follows. N
genes and a set of itemsets I to be tested are given. WY-
procedure generates a permuted dataset by randomly shuffles
of the relationships between genes and the expression levels.
The associations between a gene and TFs that target the
gene are held. The minimum P-value among all tests in each
permuted dataset is computed. Gathering K minimum P-
values provides the simulated null distribution by repetition

of this procedure. δ is calculated as the α percentile point
in the distribution.

The running time of WY-procedure increases linearly with
the number of itemsets to be tested. When all possible
itemsets are tested, the time increases exponentially with
the number of motifs. Even for a small number of motifs,
an intractable amount of time might be required.

III. PROPERTIES TO FIND THE MINIMUM P-VALUE
EFFICIENTLY

We will propose an efficient algorithm to find the mini-
mum P-value among all of the itemsets in each permuted
dataset in Section IV. Since this task is NP-hard [9], in
this section, we introduce a pruning strategy for itemsets
to solve the problem in practice. Because minimum P-value
calculation of thousands of permuted datasets is required
to generate the empirical distribution of minimum P-values,
the strategy has a large impact on acceleration of the entire
computing time.

Fig. 1 illustrates the important properties of our algorithm.
In Fig. 1(a), a light red bar shows the P-value of an itemset.
A red point represents the lower bound of the P-value of
the itemset, which will be shown in Property 1. Assume
that we have a threshold t for the lower bound (the red solid
line). Itemsets whose lower bounds are at most t are defined
as candidate itemsets (itemsets in the red arrow region).
The other itemsets are defined as non-candidate itemsets.
When a candidate itemset has the P-value smaller than t,
like itemset {1, 2, 3}, all of the non-candidate itemsets such
as {1, 2, 3, 4} never achieve the minimum P-value because
their lower bounds for the P-value are larger than t. Hence,
we can avoid P-value calculation of non-candidate itemsets
to find the minimum P-value.

However, there are two problems to this approach. One
is how to efficiently enumerate the candidate itemsets with
t. The other is how to determine t. To solve the first
problem, we show that the candidate itemsets with t are
identical to the itemsets targeting λ or more genes, where
λ corresponds to t. The lower bound of P-value has one-to-
one correspondence to the number of genes that contain all
of the motifs in the itemset (Fig. 1(b)). This relation enables
us to convert t to λ. With λ, we can efficiently list itemsets
contained in λ or more genes by using FIM algorithm. Since
the frequent itemsets correspond to the candidate itemsets,
we can accelerate the findings of the candidate itemsets.
For the second problem, we use λ instead of t. To find
the optimal threshold, we propose an algorithm in which λ
decreases gradually in Section IV.

A. Lower Bound of Fisher’s Exact Test

Suppose that an itemset I targets x = x(I) genes. The
lower bound of P (I) can be described independently of the
choice of I and only depends on x from Terada et al. [10].
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Figure 1. Illustration of the properties of candidate itemsets. (a) Candidate
and non-candidate itemsets. Each point and bar indicate the lower bound
f(x) and its P-value, respectively. The candidate and non-candidate item-
sets are represented as the red and white arrows, respectively. Upon adding
a motif to an itemset, f(x) increases while the P-value does not always
increase. (b) Relationship between an itemset and the number of genes that
have all of the motifs in I . On adding a motif to an itemset, the number
of genes that contain I decreases. A candidate itemset contains TF motifs
targeting λ or more genes. Our algorithm selects the candidate itemsets
with the number of genes instead of using the lower bound of the P-value
since an FIM algorithm is directly applicable.

Property 1. For an itemset targeting x genes, the lower
bound of the P-value is described as

f(x) =



(
n

x

)/(
N

x

)
for x ≤ n,

1

/(
N

n

)
otherwise.

(2)

To use two-sided Fisher’s exact test, the lower bound is
achieved at the smaller value between the two edge points
of min{0, n+ x−N} and min{n, x}.

B. Monotonicity of Lower Bound

f(x) monotonically increases upon adding a motif to I
since x = x(I) decreases by adding an item to I and f(x)
decreases to x from Terada et al. [10].

Property 2. f(x) decreases to x.

The lower bound and its monotonicity are held on other
types of statistical tests including Mann-Whitney U test for

a single ranked series. Therefore, the proposed algorithm,
which will be introduced in Section IV, can be extended to
these statistical tests.

C. Listing Candidate Itemsets with FIM Algorithm

The following properties enable us to use FIM algorithm
to list the candidate itemsets with t.

Property 3. For itemsets I and I ′ ⊇ I , f(x(I)) ≤ f(x(I ′)).

Proof: Because x(I) ≥ x(I ′), f(x(I)) ≤ f(x(I ′)).
The monotonicity is useful for listing all itemsets within

the candidate itemsets.

Property 4. Assuming that f(λ) ≤ t < f(λ− 1), the can-
didate itemsets with t are identical to the itemsets targeting
λ or more genes.

Proof: When x(I) ≥ λ for an itemset I , I is the
candidate itemset because f(x(I)) ≤ f(λ) from Property 2.
Otherwise, I is the non-candidate itemset with t. Hence,
Property 4 holds.

Properties 3 and 4 allow us to use λ in FIM algorithm to
list candidate itemsets. Since FIM algorithm requires a large
amount of computing time for a small λ, we start from a
large λ and gradually decrease λ to find the minimum P-
value of all of the itemsets. When the smallest P-value in
the candidate itemsets is larger than f(λ), the P-value is the
minimum P-value of all of the itemsets.

IV. ALGORITHM

In this section, we propose an algorithm called FastWY to
efficiently find the adjusted significance level δ for keeping
FWER ≤ α using randomly permuted datasets. For each
permuted dataset, FastWY discovers the minimum P-value
among all of the itemsets by using Properties 1 to 4.
Gathering them gives us null distribution of the minimum
P-values, in which the α percentile value can be used as the
adjusted significance level for multiple testing.

FastWY includes three steps. Step 1: Estimation of a null
distribution. Step 2: Calculation of the δ. Step 3: Listing
itemsets whose P-values are less than or equal to δ. The
overall structure of FastWY is the same as that of WY-
procedure in Section II. The main difference is in Step 1. To
find the minimum P-value efficiently, we introduce a branch-
and-bound method by using Properties 1-4.

In Step 1, for a permuted dataset, we compute the
minimum P-value among all of the tests. From Property
1, when f(λ) is larger than the minimum P-value, it is
impossible for any of the non-candidate itemsets to achieve
the minimum P-value. Therefore, given that p is the smallest
P-value of the candidate itemsets and f(λ) > p, p is the
minimum P-value of all of the possible itemsets. Since a
small λ requires a large amount of computing time for FIM,
we start from a large value of λ and gradually decrease λ
while f(λ) ≤ p. First, λ is assigned min{xmax, n}, where



Table I
DATASET

Dataset
# of motifs

(M )
# of genes

(N )
# of highly exp.

genes (n)
Avg. # of

motifs
Yeast 102 5,988 639 (10.7 %) 0.509
Human 397 11,610 638 (5.5 %) 6.510

xmax = max{x(I) for I = {i} where i = 1, . . . ,M}. FIM
algorithm lists candidate itemsets on λ. FastWY computes
the smallest P-value p among the candidate itemsets. Then,
FastWY compares p with f(λ). If p > f(λ), a non-candidate
itemset can achieve a P-value smaller than p, and hence we
replace λ with λ− 1, and repeat the procedures. A decrease
in λ causes an increase in f(λ) from Property 2, which
brings f(λ) closer to p. If p ≤ f(λ), then p is the minimum
P-value.

Step 1 is performed on K different permuted datasets,
and generates K minimum P-values. Based on the P-values,
adjusted significance level δ is found from Step 2. In Step 3,
the significant itemsets for δ are listed. The step is similar
to the minimum P-value findings in Step 1 except using
δ instead of p. After listing the candidate itemsets on δ
and calculating P-values, the itemsets whose P-values are
less than δ are statistically significant itemsets after multiple
testing correction.

V. PERFORMANCE EVALUATION

We check the computation efficiency of FastWY using the
real dataset. All programs are written in Python 2.7 except
for FIM. For the FIM program, we use LCM [11] due to
its fast calculation. All experiments are tested on a machine
with 2 AMD Opteron processors at 2.3 GHz with 32 GB of
RAM running RedHat Linux.

A. Datasets and Experimental Settings

We compare the performance of FastWY and WY-
procedure with the two datasets shown in Table I. For
the yeast dataset, gene expression levels are obtained from
Gasch et al. [12]. If the expression level of a gene in
the amino acid starvation is two times higher than that
in the control environment, the gene is considered as a
highly expressed gene. The relationships between motifs and
genes are observed in Harbison et al. [13]. For the human
dataset, we used gene expression level data observed from
84 tissues [14]. When the expression level of a gene in
the trachea is two times higher than that of the median
expression calculated from 84 tissues, it is regarded as a
highly expressed gene. For the relationships between motifs
and genes, we used the Molecular Signatures Database [15].
Since there is no standard method to find the optimal thresh-
old to discriminate between genes that are highly expressed
and those that are not, we use an arbitrary threshold.

For the statistical measure, a one-sided Fisher’s exact
test was used. We set α at 0.05. FastWY estimates null
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Figure 2. Running time of FastWY and WY-procedure with increasing
numbers of motifs. (a) Yeast dataset. (b) Human dataset.
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Figure 3. Running time of FastWY and WY-procedure with increasing
numbers of genes. (a) Yeast dataset. (b) Human dataset.

distributions from 1,000 permuted datasets. WY-procedure
is measured the computation time with the same setting in
FastWY. However, because it requires more than a month,
we estimate the running time of WY-procedure on K =
1, 000 from the time on K = 100. To check the scalability,
we generate datasets of various sizes by random selection
from yeast and human datasets. All analyses were repeated
5 times to calculate the means and variances of the values.

B. Comparison between FastWY and WY-procedure

Figs. 2 and 3 indicate that the running time changes with
an increasing the number of motifs and genes, respectively.
WY ≤ 2 and WY ≤ 3 show WY-procedure for up to two
and three motifs, respectively. Note that the y-axis is on a
log scale. Since the variance is too small to describe in these
figures, we show only the average computation time. In the
experiments, FastWY can find the minimum P-values from
all permuted datasets even when the sizes of all itemsets are
considered.

First, we check the performance upon increasing the num-
ber of motifs. Fig. 2(a) shows that FastWY can compute the
adjusted significance level δ orders-of-magnitude faster than
with WY-procedure in the yeast dataset. The computation
time of FastWY increases slightly to M , while that of WY-
procedure increases exponentially to M . We performed the
same experiments on the human dataset. Fig. 2(b) shows that
the computing times for both FastWY and WY-procedure
increase to M , and the that computation time of FastWY



is faster than that of WY-procedure for up to three motifs
(WY ≤ 3).

For an increasing number of motifs, our strategy works
more effectively. The entire number of itemsets to be tested
increases exponentially to M , while the slope of the com-
putation time of FastWY is much lower than exponential in
both Figs. 2(a) and (b). For example in Fig. 2(b), the slope
of the computation time of FastWY to M is comparable
with that of WY ≤ 3, and is orders of magnitude faster than
the slope of WY ≤ 4. Therefore, the slope in Fig. 2(b)
implies that our pruning technique works well to reduce
the computation time for FastWY. For example, in the
human dataset with M = 397, FastWY computes P-values
for 8.70 · 109 itemsets on average in five repetitions.This
value is 83.4 % of WY ≤ 3 since WY-procedure computes
the P-value for 1.04 · 1010 itemsets even when we check
combinations of up to three motifs. As a result, FastWY is
faster than WY-procedure.

Next, we check the performance with an increasing the
number of genes. Fig. 3 shows the running time with varying
N . FastWY is faster than WY ≤ 2 in Fig 3(a), and is faster
than WY ≤ 3 in Fig. 3(b). Therefore, FastWY succeeds in
accelerating WY-procedure.

The computation time of FastWY is increased to N in
both figures in Fig. 3 since FastWY tends to finish the
computation at a small λ/N for a dataset with large N .
For example, in the yeast dataset, FastWY continues its
calculation until λ decreases to 1, independent of N . In the
human dataset, when N is varied from 2,000 to 11,611, λ
gradually increases from 1.0±0.0 to 2.6±0.548 on average
in five repetitions. The ratio of λ/N becomes smaller for
the larger N in both datasets. Given a small λ/N , FIM
algorithm requires a large amount of time for enumerat-
ing itemsets whose frequency is larger than λ. Therefore,
FastWY requires much time to analyze a dataset with large
N . However, FastWY is much faster than WY-procedure,
and it enables us to test all of the motif combinations even
when any combinations are considered.

FastWY optimizes λ by gradually decreasing the value.
FastWY starts from λ = 221 and finishes at λ = 1 in
yeast dataset, i.e., FIM is performed 220 times. Although
all itemsets targeting at least one gene are listed, the
computation time is faster than WY-procedure. Hence, the
number of repeats does not have huge impact on calculation
time. In the human dataset, FIM algorithm is performed
635 times on average and requires about 2,000 seconds, and
FastWY finishes when λ is 2.6 on average in five repetitions.
This result indicates that FastWY can avoid many P-value
calculations. If we compute λ = 1 for each permuted dataset
in the human dataset, 19,513,920 P-value calculations are
required, which is 2.26 times more than that for FastWY. It
will take a large amount of computation time. For similar
reasons, other searching algorithms, such as a binary search,
are difficult to apply in finding the optimal λ.

C. Detected Motif Sets

We check significant itemsets in both the yeast and human
datasets. We used α = 0.05 and K = 1, 000 for the
calculation.

In the yeast dataset, the adjusted significance level δ
is 0.000580, and 12 itemsets are detected as significant
itemsets. The largest itemset contains four motifs, CBF1,
MET4, MET31, and MET32 whose P-value is 0.000129.
This four-motif combination is confirmed that they work in
sulfur amino acid metabolism with interactions by biological
experiments [16]. Bonferroni correction [2], which is often
used theoretically in multiple testing procedure, cannot show
the significance due to its too conservative correction. When
we test all of the itemsets up to four motifs with Bonferroni
correction, the P-value for a significant itemset requires to
be less than 1.13 · 10−11.

In the human dataset, the adjusted significance level δ
is 1.781 ·10−7. Seven itemsets are detected as significant
itemsets, and the largest itemset contains eight motifs,
MYOD, E4F1, FOXO4, ATF, CREB, CREBP1, E12, and
ATF3. The P-value is 2.693 · 10−8. We cannot find this
combination as long as we focus on a singleton because
any single motif does not have significance. Furthermore,
none of the itemsets that contains up to four motifs become
a significant itemset. Because no biological investigation has
been performed on such large combinations, the findings of
statistically significant combinations can motivate biologists
to confirm whether these combinations function in cells.

VI. RELATED WORK

To find the combinatorial effects of motifs, screening of
all pairs of motifs [17], [18] have been provided. Although
these procedures might possibly be improved to screen
combinations of three or more motifs, a crucial problem
is how to assess the statistical significance of discovered
motifs.

As multiple testing procedures for controlling FWER,
Bonferroni correction and its variants have been pro-
posed [2], [3]. Their conservativeness results in low detec-
tion power especially when there are a large number of tests.
These methods could overlook combinatorial regulations
because we test a large number of motif combinations.

The large computation time of WY-procedure [4] prohibits
its application in biological problems. To overcome this
problem, Zhang et al. proposed a fast computing method
for WY-procedure to find statistically significant pairs of
single nucleotide polymorphisms (SNPs) [19]. Extending
this method to detect three or more itemsets is not trivial.

VII. CONCLUSIONS AND FUTURE WORK

We proposed an efficient algorithm to accelerate WY-
procedure to list statistically significant motif combina-
tions. Our algorithm uses the property that distribution of
FWER only depends on the minimum P-values of permuted



dataset, and we developed the method to accurately find
the minimum value. We showed that our algorithm can
successfully calibrate the significance level for combinatorial
regulation discovery even when all possible combinations
are considered. The computation time is faster than that
of WY-procedure when up to three motif combinations are
computed, showing that the algorithm achieved orders-of-
magnitude acceleration to WY-procedure. The results con-
tain a combination of up to nine motifs from a real human
dataset. Since the statistical significance of the combination
is guaranteed, this result motivates the biologists or the
medical scientists to verify these results experimentally.

This problem has many applications. For examples, the
drug combination detection problem requires investigation
of combinations of 10,000 drugs, and the discovery of SNPs
combinations in medical science requires the consideration
of combinations of more than three million positions. How-
ever, the number of elements, such as drugs and SNPs,
in some of these problems is larger than that we solved.
Therefore, improvement of the computational speed of our
algorithm would be useful. One solution would be the
development of FIM algorithm suitable for our problem.
We ran an existing FIM algorithm on every λ, but some
overlaps were found between them. Reducing duplication
may accelerate the running time of our algorithm. Another
solution is fast computation of the FWER distribution. In-
stead of using the exact minimum value from each permuted
dataset, estimation of the value would be enough to adjust
the significance level in practice.
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